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We are only talking about one thing today.
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Knowledge

Information
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Data are useless values.
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Information is translated data into something understandable
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Knowledge is relevant, objective information gained through
experience and study

Impact of infection prevention and
control

30%

Effective infection prevention and control reduces
health care-associated infections by at least 30%.

https://www.who.int/infection-prevention/en/
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Wisdom is our ability to take knowledge and translate it to
diverse areas — also our ability to judge which knowledge is
applicable or correct.

BANTER, YOU'RE SO WISE

YOU'RE LIKE/A MINIATURE BUDDHA
COVERED'IN HAIR............ ...
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“Translating data to wisdom for the elimination of healthcare-
associated infection”

™ 2019, Tim Wiemken

Spreading knowledge. Preventing infection.®




4 Where is this going, Tim?

Learning
Conference

\We have data. Lots of it.
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4 Where is this going, Tim?
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\We have data. Lots of it.

~ 1 billion in/foutpatient interactions in the USA each year.
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4 Where is this going, Tim?
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\We have data. Lots of it.

~ 1 billion in/foutpatient interactions in the USA each year.

The population of the USA is ~ 330 million

China and India: 1.4 Billion people each.




4 Where is this going, Tim?
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This means maybe ~10 billion in/outpatient interactions in those
areas
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4 Where is this going, Tim?
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There is a big difference between a million and a billion. Now
think 10 times that.
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Traditional analytics (statistics) cannot handle these ‘big data'.

But generally, more data = better predictions
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Machine learning is a set of analytical tools
and algorithms that allow for predictive
modeling.

Machine learning is a way to achieve “artificial
intelligence”.
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Wouldn't it be great to have an automated prediction of
healthcare-associated infections instead of spending all day (or
week) going through the NHSN definitions?

YEAHH'HHHH

! J. 1, II , \
5 W _-_:
) v s

1 THATWOULD BE aninr;_,m
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B BMC Part of Springer Nature Explore Journals  Get Published ~ About BMC Sample Method Accuracy(SD) AUC(SD) Sensitivity(SD) Specificity(SD) Kappa(SD)
Train CART 0.804(0.089) 0.851(0.074) 0.739(0.094) 0.851(0.106) 0.597(0.180)
BMC Med |ca| Informatlcs and Decision Ma klng c5.0 0.912(0.033) 0.971(0.018) 0.868(0.047) 0.942(0.030) 0.819(0.068)
KNN 0.645(0.083) 0.696(0.066) 0.628(0.127) 0.657(0.130) 0.282(0.162)
Home ~About Articles ~Submission Guidelines NB 0.675(0.095) 0.798(0.094) 0.868(0.096) 0.544(0.098) 0.376(0.178)
- i RF 0.917(0.017) 0.971(0.016) 0.891(0.048) 0.937(0.032) 0.831(0.035)
SVM 0.871(0.030) 0.936(0.030) 0.832(0.077) 0.923(0.043) 0.733(0.062)
Research article | OPEN Open Peer Review | Published: 13 March 2019 LGR 0.670(0.084) 0.762(0.083) 0.621(0.076) 0.706(0.139) 0.330(0:160)
Test CART 0.830 0.880 0.904 0732 0.648
L] L] L] L] L
Predicting hospital-acquired pneumonia among cs0 0945 0993 0959 007 027
KNN 0.667 0701 0745 0563 0.312
. . ] . h . I . h
sch |zophren|c patients: a machine learning approac Ne 0733 0831 0628 0873 0479
RF 0927 0994 1.000 0.831 0.849
Kuang Ming Kuo, Paul C. Talley, Chi Hsien Huang ™ & Liang Chih Cheng SVM 0.897 0953 0.968 0.803 0786
BMC Medical Informatics and Decision Making 19, Article number: 42 (2019) = Download Citation ¥ LGR 0.739 0.823 0.798 0.662 0.464
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Applying deep learning on electronic health records in Swedish
to predict healthcare-associated infections

Olof Jacobson Hercules Dalianis
Department of Computer Department of Computer
and Systems Sciences, (DSV) and Systems Sciences, (DSV)
Stockholm University Stockholm University

P.O. Box 7003, 164 07 Kista P.O. Box 7003, 164 07 Kista
olofja@kth.se hercules@dsv.su.se

Proceedings of the 15th Workshop on Biomedical Natural Language Processing, pages 191-195,
Berlin, Germany, August 12, 2016. (©)2016 Association for Computational Linguistics

Abstract

Detecting healthcare-associated infections
pose a major challenge in healthcare. Us-
ing natural language processing and ma-
chine learning applied on electronic pa-
tient records is one approach that has been
shown to work. However the results indi-
cate that there was room for improvement
and therefore we have applied deep learn-
ing methods. Specifically we implemented
a network of stacked sparse auto encoders
and a network of stacked restricted Boltz-
mann machines. Our best results were ob-
tained using the stacked restricted Boltz-

mann machines with a precision of 0.79
and a recall of 0.88.

Spreading knowledge. Preventing infection.®
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Major article

Surveillance versus clinical adjudication: Differences persist @C _—
o o o P rossiviar,
with new ventilator-associated event definition

Kathleen M. McMullen MPH, CIC®*, Anthony F. Boyer MD®, Noah Schoenberg MD®,
Hilary M. Babcock MD, MPH¢, Scott T. Micek PharmD ¢, Marin H. Kollef MDP

2 Hospital Epidemiology and Infection Prevention Department, Barnes-Jewish Hospital, St Louis, MO

b Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO
¢ Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO

4t Louis College of Pharmacy, St Louis, MO

Key Words: Background: The National Healthcare Safety Network (NHSN) has recently supported efforts to shift
Pneumonia surveillance away from ventilator-associated pneumonia to ventilator-associated events (VAEs) to
Ventilator-associated decrease subjectivity in surveillance and minimize concerns over clinical correlation. The goals of this

fff?ft;gizce study were to compare the results of an automated surveillance strategy using the new VAE definition
Nosocomial with a prospectively performed clinical application of the definition.

Methods: All patients ventilated for >2 days in a medical and surgical intensive care unit were evaluated
by 2 methods: retrospective surveillance using an automated algorithm combined with manual chart
review after the NHSN’s VAE methodology and prospective surveillance by pulmonary physicians in
collaboration with the clinical team administering care to the patient at the bedside.

Results: Overall, a similar number of events were called by each method (69 vs 67). Of the 1,209 patients,
56 were determined to have VAEs by both methods (k = .81, P =.04). There were 24 patients considered
to be a VAE by only 1 of the methods. Most discrepancies were the result of clinical disagreement with
the NHSN’s VAE methodology.

Conclusions: There was good agreement between the study teams. Awareness of the limitations of the
surveillance definition for VAE can help infection prevention personnel in discussions with critical care
partners about optimal use of these data.

Spreading knowledge. Preventing infection.®
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A BMC Part of Springer Nature Explore Journals  Get Published About BMC

Antimicrobial Resistance & Infection Control

Home About Articles Submission Guidelines

Research | OPEN | Published: 02 August 2012

Concordance between European and US case
definitions of healthcare-associated infections

Sonja Hansen B, Dorit Sohr, Christine Geffers, Pascal Astagneau, Alexander Blacky, Walter Koller, Ingrid Morales,

Maria Luisa Moro, Mercedes Palomar, Emese Szilagyi, Carl Suetens & Petra Gastmeier

Antimicrobial Resistance and Infection Control 1, Article number: 28 (2012) Download Citation &

Results

Differences in HAI definitions were found for bloodstream infection (BSI), pneumonia
(PN), urinary tract infection (UTI) and the two key terms “intensive care unit (ICU)-
acquired infection” and “mechanical ventilation”. Concordance was analyzed for
these definitions and key terms with the exception of UTL Surveillance was
performed in 47 ICUs and 6,506 patients were assessed. One hundred and eighty PN
and 123 BSI cases were identified. When all PN cases were considered, concordance
for PN was k =0.99 [CI 95%: 0.98-1.00]. When PN cases were divided into subgroups,
concordance was k =0.90 (CI 95%: 0.86-0.94) for clinically defined PN and k =0.72 (CI
95%: 0.63-0.82) for microbiologically defined PN. Concordance for BSI was k= 0.73 [CI
95%: 0.66-0.80]. However, BSI cases secondary to another infection site (42% of all BSI
cases) are excluded when using US definitions and concordance for BSI was k = 1.00
when only primary BSI cases, i.e. Europe-defined BSI with ”catheter” or “unknown”
origin and US-defined laboratory-confirmed BSI (LCBI), were considered.

Spreading knowledge. Preventing infection.®

N aTTTmT




S Apied Why not? We can’t even agree with ourselves

Learning
Conference

Agreement in Classifying Bloodstream
Infections Among Multiple Reviewers
Conducting Surveillance

Jeanmarie Mayer,' Tom Greene,' Janelle Howell, Jian Ying,! Michael A. Rubin,"? William E. Trick,® and
Matthew H. Samore,"” for the CDC Prevention Epicenters Program®

"University of Utah School of Medicine, and 2Salt Lake City Veterans Affairs Medical Center IDEAS Center, Salt Lake City, Utah; ®Stroger Hospital of

Cook County, Chicago, lllinois; and “Centers for Disease Control and Prevention, Atlanta, Georgia
Clinical Infectious Diseases 2012;55(3):364—70

Results. Overall, 114 patient records were reviewed by 18 IPs, the majority of whom specified they followed
National Healthcare Safety Network criteria. The overall agreement among IPs by x statistic was 0.42 (standard
error [SE], 0.06). IPs had better agreement with a simple laboratory-based definition with an average x of 0.55
(SE, 0.05). The proportion of patient records that 18 IPs reported with CLABSI ranged from 14% to 39% (overall
mean, 28% with a coefficient of variation of 25%). When simple laboratory-based methods were applied to differ-
ent sets of patient records, classification was more consistent with CLABSI assigned in a proportion ranging from
36% to 42% (overall mean, 39%).

Conclusions. Reliability of IP-conducted surveillance to identify HAI may not be ideal for public reporting
goals of interhospital comparisons.

Spreading knowledge. Preventing infection.®
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Predicting ‘no shows’ in a clinic visit.

Data from our local EPIC instance

Lots of tinkering with variables, imputing missing values, adding in external data by linking geospatially.

Sound fancy? Its not really that fancy.

Spreading knowledge. Preventing infection.®
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“W- % &- = M & A Gowiile/function ER - Addins -
&l editor_noshow_fcm_ADI.R i h2o_nos ‘m.R B train.down &) editor_noshow_sampling_FCM.R
Data fr0| I l the EHR - A TFilter Cols: €< 1-50 3»» Q

ru2003 * walkin * pctnosl0 * gender ~ age ~ allocate ~ * lzden =~ timediff * noshowlyr ~ noshowhistory =
1.000 30 6.466 3 111.3%
1.000 73 8.190 89 103.3¢

1.000 8.168 5 93.511

Variables modified
and created...

1.000 K 100.3%
1.000 i 9. 108.0C
1.000 L 127.61
1.000 b 109.3¢

1.000 30 5. 98.974

1
2
3
4
5
6
7
8
)

No show history,
population of zip code,
age, sex...

1.000 2 .50 94.36€

=
(=]

1.000 39 8.8 116.6¢

-
-

0.991 g 5 102.0¢

-
%]

0.991 9 63 95.473

—
w

1.000 0.023 106.45

—
B

0.919 8.550 111.1¢C
1.000 212 65.51¢

—
]

102 variables in total

—
(3]

1.000 kil

—
~

1.000 6 8. 118.9¢

-
oo

1.000 0 114.8¢

—
o

1.000 7 105.83

One at the end “class” is 0 for show, and 1 for no show
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- % & - m | . A Go to file/function B8 - Addins -

& editor_noshow_fcm_ADIR &) h2o_noshow_fem R @ editor_noshow_sampling_FCM.R — ]
- A @ @sourceonSave ® . W B Run & B Source -

Using a FREE program
to automate this model, H20 S A R, 1 e ey

=] r
training_frame = as.h2o(train.fac),
max_runtime_secs = 208, seed=12349,
stopping_metric = "mean_per_class_error")

Takes out most of the legwork.

The model learns the patterns = -
associated with showing or not [ ReaEEEEs

-

Spreading knowledge. Preventing infection.®
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#### extract best model

championModel = aml@leader

#### get accuracy in test set
preds<-predict(championModel, as.h2o(test.features.fac))
#### extract actual predictions

° ThrOW S|m|lar out<-as.vector(preds$predict$predict)
###H# create confusion matri
data at the cm<—confusionMatrix(factor(out), test.label.fac, positive='"no
model and See > #### get row percentages for predictions vs actual in test set
round(prop.table(cmétable, 1)*1€ )
hOW We” the round(prop.table(cmétable, 2

prediction #### view full confusion matrix

matches with ;20.SaveModelichampionModel, e e A B R TS s
the actual
show/no show GOt END,

Status Console  Terminal Johs =

~f - ¥

R Script =

Spreading knowledge. Preventing infection.®
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Nouns & Adjective

e
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fuel openkmow
s deor N
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7 truth
100 -
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0 T - | | _ | | |
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Methods Inf Med. 2019 Jun;58(1):31-41. doi: 10.1055/s-0039-1677692. Epub 2019 Mar 15.

Deep Learning versus Conventional Machine Learning for Detection of Healthcare-Associated
Infections in French Clinical Narratives.

Rabhi 8", Jakubowicz J', Metzger MHZ-34,

+ Author information

Abstract
OBJECTIVE: The objective of this article was to compare the performances of health care-associated infection (HAI) detection
between deep learning and conventional machine learning (ML) methods in French medical reports.

METHODS: The corpus consisted in different types of medical reports (discharge summaries, surgery reports, consultation reports,
etc.). Atotal of 1,531 medical text documents were extracted and deidentified in three French university hospitals. Each of them was
labeled as presence (1) or absence (0) of HAI. We started by normalizing the records using a list of preprocessing techniques. We
calculated an overall performance metric, the F1 Score, to compare a deep learning method (convolutional neural network [CNN]) with
the most popular conventional ML models (Bernoulli and multi-naive Bayes, k-nearest neighbors, logistic regression, random forests,
extra-trees, gradient boosting, support vector machines). We applied the hyperparameter Bayesian optimization for each model based
on its HAI identification performances. We included the set of text representation as an additional hyperparameter for each model, using
four different text representations (bag of words, term frequency-inverse document frequency, word2vec, and Glove).

RESULTS: CNN outperforms all other conventional ML algorithms for HAI classification. The best F1 Score of 97.7% + 3.6% and best
area under the curve score of 99.8% + 0.41% were achieved when CNN was directly applied to the processed clinical notes without a
pretrained word2vec embedding. Through receiver operating characteristic curve analysis, we could achieve a good balance between
false notifications (with a specificity equal to 0.937) and system detection capability (with a sensitivity equal to 0.962) using the Youden's
index reference.

CONCLUSIONS: The main drawback of CNNs is their opacity. To address this issue, we investigated CNN inner layers' activation
values to visualize the most meaningful phrases in a document. This method could be used to build a phrase-based medical assistant
algorithm to help the infection control practitioner to select relevant medical records. Our study demonstrated that deep learning
approach outperforms other classification learning algorithms for automatically identifying HAls in medical reports.

Spreading knowledge. Preventing infection.®
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Contents lists available at ScienceDirect

" informatics

International Journal of Medical Informatics

journal homepage: www.elsevier.com/locate/ijmedinf

Accuracy of using natural language processing methods for identifying R)
healthcare-associated infections s

updates

Nastassia Tvardik®, Ivan Kergourlayh, André Bittar®, Frédérique Segondd’e, Stefan Darmoni™"s,
Marie-Héléne Metzger™™*

2 Université Lyon 1, CNRS UMR5558 Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
® University Hospital of Rouen, Department of Biomedical Informatics, CISMeF, Rouen, France

< Holmes Semantic Solutions, Grenoble, France

4 Viseo Technologies, Grenoble, France

©INALCO ERTIM, Paris, France

£ TIBS, LITIS EA 4108, Normandy University, France

8 INSERM, U1142, LIMICS, Paris, France

" Hospices Civils de Lyon, Hopital de la Croix-Rousse, Unité d’hygiéne et d’épidémiologie, Lyon, France

ARTICLE INFO ABSTRACT

Keywords: Objective: There is a growing interest in using natural language processing (NLP) for healthcare-associated in-
Epidemiology fections (HAIs) monitoring. A French project consortium, SYNODOS, developed a NLP solution for detecting
Healthcare-associated infections medical events in electronic medical records for epidemiological purposes. The objective of this study was to

Decision support systems, Clinical
Medical records systems, computerized
Natural language processing

evaluate the performance of the SYNODOS data processing chain for detecting HAIs in clinical documents.
Materials and methods: The collection of textual records in these hospitals was carried out between October 2009
and December 2010 in three French University hospitals (Lyon, Rouen and Nice). The following medical spe-
cialties were included in the study: digestive surgery, neurosurgery, orthopedic surgery, adult intensive-care
units. Reference Standard surveillance was compared with the results of automatic detection using NLP.
Sensitivity on 56 HAI cases and specificity on 57 non-HAI cases were calculated.

Results: The accuracy rate was 84% (n = 95/113). The overall sensitivity of automatic detection of HAIs was
83.9% (CI 95%: 71.7-92.4) and the specificity was 84.2% (CI 95%: 72.1-92.5). The sensitivity varies from one
specialty to the other, from 69.2% (CI 95%: 38.6-90.9) for intensive care to 93.3% (CI 95%: 68.1-99.8) for
orthopedic surgery. The manual review of classification errors showed that the most frequent cause was an
inaccurate temporal labeling of medical events, which is an important factor for HAI detection.

Conclusion: This study confirmed the feasibility of using NLP for the HAI detection in hospital facilities.
Automatic HAI detection algorithms could offer better surveillance standardization for hospital comparisons.

Spreading knowledge. Preventing infection.®
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INFECTION CONTROL & HOSPITAL EPIDEMIOLOGY SEPTEMBER 2015, VOL. 36, NO. 9

ORIGINAL ARTICLE

Natural Language Processing for Real-Time Catheter-Associated
Urinary Tract Infection Surveillance: Results of a Pilot
Implementation Trial

Westyn Branch-Elliman, MD, MMSc;? Judith Strymish, MD;** Valmeek Kudesia, MD;>® Amy K. Rosen, PhD;%78
Kalpana Gupta, MD, MPH>*%7

BACKGROUND. Incidence of catheter-associated urinary tract infection (CAUTI) is a quality benchmark. To streamline conventional
detection methods, an electronic surveillance system augmented with natural language processing (NLP), which gathers data recorded in clinical
notes without manual review, was implemented for real-time surveillance.

OBJECTIVE. To assess the utility of this algorithm for identifying indwelling urinary catheter days and CAUTI.
SETTING. Large, urban tertiary care Veterans Affairs hospital.

METHODS. All patients admitted to the acute care units and the intensive care unit from March 1, 2013, through November 30, 2013, were
included. Standard surveillance, which includes electronic and manual data extraction, was compared with the NLP-augmented algorithm.

RESULTS. The NLP-augmented algorithm identified 27% more indwelling urinary catheter days in the acute care units and 28% fewer
indwelling urinary catheter days in the intensive care unit. The algorithm flagged 24 CAUTI versus 20 CAUTI by standard surveillance methods;
the CAUTI identified were overlapping but not the same. The overall positive predictive value was 54.2%, and overall sensitivity was 65% (90.9%
in the acute care units but 33% in the intensive care unit). Dissimilarities in the operating characteristics of the algorithm between types of unit
were due to differences in documentation practice. Development and implementation of the algorithm required substantial upfront effort of
clinicians and programmers to determine current language patterns.

coNcLUsIOoNs. The NLP algorithm was most useful for identifying simple clinical variables. Algorithm operating characteristics were specific
to local documentation practices. The algorithm did not perform as well as standard surveillance methods.
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Analysis of time series data in infection control is troublesome
Use of Statistical Process Control limits true detection of what is going on
Anomaly detection algorithms can help fix this.

Main issues:
1. Autocorrelation
2. Seasonality
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 When something now is correlated with other things recently, but not so much a while ago

Example: Your MRSA rate this month is at least in part due to what it was last month (due to: patient carry over,
organism longevity in the environment, staff processes, disinfectant use, etc.)

That same rate isn’t as correlated with the MRSA rate 4 months ago (temporal autocorrelation).

I KNOW AUTOCORRELATION..,
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* There are a lot of seasonal factors that are linked to infection
* The July Effect (yikes)
* Humidity (Acinetobacter)
* Air conditioning (Legionella)
* Dirty wounds (MVA)

A July Spike in Fatal Medication Errors: A Possible Effect of New

Medical Resident Influence of Relative Humidity and Suspending Menstrua on
edical Kesidents Survival of Acinetobacter spp. on Dry Surfaces
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capo.ctrsu.org:3838/shiny/ipstat

American Journal of Infection Control 46 (2018) 124-32 | Home Insert Draw Page Layout Formulas Data Review View Comments
Contents lists availsble at ScienceDirect -k i:" | calbri(Bcay) vz v A ==B| - Wrap Text v General v 1o [ |noma | Bad Good , & e =] - ﬁ :i“'cj"“"" M AT / - v
. . 4 . B I U+ v | Dy A ——— T= 3= [&] Merge &Center v $ % 9 nal Format Neutral C . Insert  Delete  Format " Sort& Find & Ideas
American Journal of Infection Control poR - = - Formatting as Table Clear «  Fiter  Select
€ Possible Data Loss Some features might be lost if you save this workbook in the comma-delimited (.csv) format. To preserve these features, save it in an Excel file format. Save As...
journal homepage: .ajicjournal.org
e Al fx  date v
MﬂjOl’ Article A B c D E F G H 1 1 K L M N o P Q R H T u v w X Y z AA AB
1 date num denom
Methods for computational disease surveillance in infection @GmMm 2 1/1/09 2 456
. o ae . ’ 3 2/1/09 3 452
prevention and control: Statistical process control versus Twitter’s o anm M 35
anomaly and breakout detection algorithms : :ﬁﬁ 2 us
Timothy L. Wiemken PhD, MPH, FAPIC, CIC **, Stephen P. Furmanek MPH, MS ®, ; ‘;ﬁﬁ ; :‘;;
William A. Mattingly PhD ®, Marc-Oliver Wright MT(ASCP), MS, CIC, FAPIC ¢, i 8/1/09 B Sas
Annuradha K. Persaud MPH P, Brian E. Guinn PhD, MPH °, 10 9/1/09 10 345
Ruth M. Carrico PhD, RN, FNP-C, FSHEA, CIC °, Forest W. Arnold DO, MSc ®, 11 10/1/09 5 234
Julio A. Ramirez MD ® 12 1109 7 234
13 12/1/09 2 234
3 Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY
b Healthcare Epidemiology and Patient Safety Program, Division of Infectious Diseases, University of Louisville, Louisville, KY 14 1/1/10 4 234
15 2/1/10 7 234
American Journal of Infection Control 45 (2017) 216-21 16 !"1!10 5 234
17 4/1/10 3 342
18 5/1/10 3 243
Contents lists available at ScienceDirect 19
20
American Journal of Infection Control n
23
journal homepage: www.ajicjournal.org 24
25
far Arti 26
Major Article 59
in i i ion- 28
Process control charts in infection prevention: @Cmstk =
Make it simple to make it happen 0
31
Timothy L. Wiemken PhD, MPH, FAPIC, CIC **, Stephen P. Furmanek MPH ¢, 32
Ruth M. Carrico PhD, RN, FNP-C, FSHEA, CIC ?, William A. Mattingly PhD ¢, 53
Annuradha K. Persaud MPH *, Brian E. Guinn MPH ¢, Robert R. Kelley PhD °, z:
Julio A. Ramirez MD * 5
2 Division of Infectious Diseases, University of Louisville, Louisville, KY 37
b Department of Math and Computer Science, St Mary’s College of Maryland, St Mary’s City, MD a8
39
40
41
Contents lists available at ScienceDirect =
43
American Journal of Infection Control “
45
journal homepage: www.ajicjournal.org a7
48
Major Article b
tamnlata .
Hand hygiene compliance surveillance with time series anomaly
detection

Timothy L. Wiemken PhD, MPH, FAPIC, FSHEA, CIC **, Lori Hainaut BSN, RN, CIC b,
Heather Bodenschatz BSN, RN °, Ruby Varghese BS "

* Saint Louis University Center for Health Outcomes Research, St. Louis, MO

® Department of Infection Prevention, SSM Health Saint Louis University Hospital, St. Louis, MO . . . . ®
o e e o Spreading knowledge. Preventing infection.®
e




QUESTIONS?

Spreading knowledge. Preventing infection.
T




Spreading knowledge. Preventing infection.®



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

