2019

APIC Applied Learning Conference

Emerging Technologies

Timothy Wiemken, PhD MPH FAPIC FSHEA CIC
Associate Professor
Saint Louis University
Center for Health Outcomes Research
3545 Lafayette Ave #411
Saint Louis, MO 63104
timothy.Wiemken@health.slu.edu

Disclosures

- Faculty: Tim Weimken
- Relationships with commercial interests:
 - Consultant: Medline Industries, Avadim Health

We are only talking about one thing today.

Knowledge

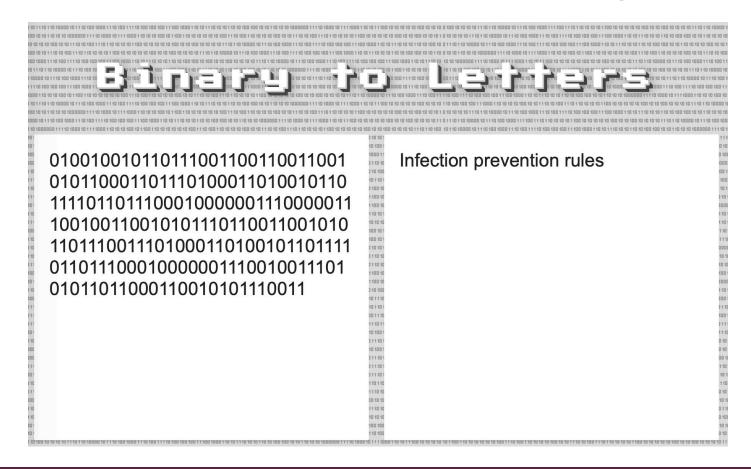
Information

Data

Data are useless values.

Information

Information is translated data into something understandable



Knowledge is relevant, objective information gained through experience and study

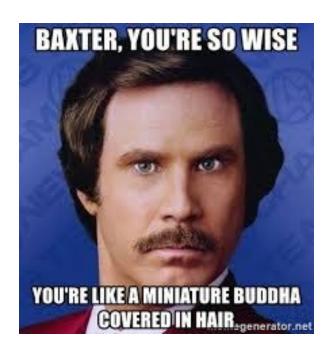
Impact of infection prevention and control

30%

Effective infection prevention and control reduces health care-associated infections by at least 30%.

https://www.who.int/infection-prevention/en/

<u>Wisdom</u> is our ability to take knowledge and translate it to diverse areas – also our ability to judge which knowledge is applicable or correct.



"Translating data to wisdom for the elimination of healthcareassociated infection"

™ 2019, Tim Wiemken

We have data. Lots of it.

We have data. Lots of it.

~ 1 billion in/outpatient interactions in the USA each year.

We have data. Lots of it.

~ 1 billion in/outpatient interactions in the USA each year.

The population of the USA is ~ 330 million

China and India: 1.4 Billion people each.

This means maybe ~10 billion in/outpatient interactions in those areas

There is a big difference between a million and a billion. Now think 10 times that.

Unit	Million	Billion
Dollars	Buys a nice house	Buys a 100-story skyscraper
People	Population of San Jose, CA	Population of Western Hemisphere
Feet	Distance from NYC to Baston	Pistance from NYC to the Moon
Seconds	About 12 days	About 32 years

Just call me big data

Traditional analytics (statistics) cannot handle these 'big data'.

But generally, more data = better predictions

Machine Learning to the Rescue

Machine learning is a set of analytical tools and algorithms that allow for predictive modeling.

Machine learning is a way to achieve "artificial intelligence".

Big Data in Infection Prevention

Wouldn't it be great to have an automated prediction of healthcare-associated infections instead of spending all day (or week) going through the NHSN definitions?

2019
APIC Applied
Learning
Conference

Why not? Even rudimentary approaches are pretty good

Predicting hospital-acquired pneumonia among schizophrenic patients: a machine learning approach

BMC Medical Informatics and Decision Making 19, Article number: 42 (2019) | Download Citation \(\psi \)

Sample	Method	Accuracy(SD)	AUC(SD)	Sensitivity(SD)	Specificity(SD)	Kappa(SD)
Train CART 0.804(0.089)		0.851(0.074)	0.739(0.094)	0.851(0.106)	0.597(0.180)	
	C5.0 0.912(0.033) KNN 0.645(0.083) NB 0.675(0.095)		0.971(0.018)	0.868(0.047)	0.942(0.030)	0.819(0.068)
			0.696(0.066)	0.628(0.127)	0.657(0.130)	0.282(0.162)
			0.798(0.094)	0.868(0.096)	0.544(0.098)	0.376(0.178)
	RF	0.917(0.017)	0.971(0.016)	0.891(0.048)	0.937(0.032)	0.831(0.035)
	SVM	0.871(0.030)	0.936(0.030)	0.832(0.077)	0.923(0.043)	0.733(0.062)
	LGR	0.670(0.084)	0.762(0.083)	0.621(0.076)	0.706(0.139)	0.330(0.160)
Test	CART	0.830	0.880	0.904	0.732	0.648
	C5.0	0.945	0.993	0.989	0.887	0.887
	KNN	0.667	0.701	0.745	0.563	0.312
	NB	0.733	0.831	0.628	0.873	0.479
	RF	0.927	0.994	1.000	0.831	0.849
	SVM	0.897	0.953	0.968	0.803	0.786
	LGR	0.739	0.823	0.798	0.662	0.464

Spreading knowledge. Preventing infection.®

Why not? Even rudimentary approaches are pretty good

Applying deep learning on electronic health records in Swedish to predict healthcare-associated infections

Olof Jacobson

Department of Computer and Systems Sciences, (DSV) Stockholm University P.O. Box 7003, 164 07 Kista olofja@kth.se

Hercules Dalianis

Department of Computer and Systems Sciences, (DSV) Stockholm University P.O. Box 7003, 164 07 Kista hercules@dsv.su.se

Proceedings of the 15th Workshop on Biomedical Natural Language Processing, pages 191–195, Berlin, Germany, August 12, 2016. ©2016 Association for Computational Linguistics

Abstract

Detecting healthcare-associated infections pose a major challenge in healthcare. Using natural language processing and machine learning applied on electronic patient records is one approach that has been shown to work. However the results indicate that there was room for improvement and therefore we have applied deep learning methods. Specifically we implemented a network of stacked sparse auto encoders and a network of stacked restricted Boltzmann machines. Our best results were obtained using the stacked restricted Boltzmann machines with a precision of 0.79 and a recall of 0.88.

2019
APIC Applied Learning Conference

Why not? Nothing agrees with clinical definitions

Major article

Surveillance versus clinical adjudication: Differences persist with new ventilator-associated event definition

Kathleen M. McMullen MPH, CIC ^{a,*}, Anthony F. Boyer MD ^b, Noah Schoenberg MD ^b, Hilary M. Babcock MD, MPH ^c, Scott T. Micek PharmD ^d, Marin H. Kollef MD ^b

Key Words: Pneumonia Ventilator-associated Surveillance Infections Nosocomial **Background:** The National Healthcare Safety Network (NHSN) has recently supported efforts to shift surveillance away from ventilator-associated pneumonia to ventilator-associated events (VAEs) to decrease subjectivity in surveillance and minimize concerns over clinical correlation. The goals of this study were to compare the results of an automated surveillance strategy using the new VAE definition with a prospectively performed clinical application of the definition.

Methods: All patients ventilated for ≥ 2 days in a medical and surgical intensive care unit were evaluated by 2 methods: retrospective surveillance using an automated algorithm combined with manual chart review after the NHSN's VAE methodology and prospective surveillance by pulmonary physicians in collaboration with the clinical team administering care to the patient at the bedside.

Results: Overall, a similar number of events were called by each method (69 vs 67). Of the 1,209 patients, 56 were determined to have VAEs by both methods ($\kappa = .81, P = .04$). There were 24 patients considered to be a VAE by only 1 of the methods. Most discrepancies were the result of clinical disagreement with the NHSN's VAE methodology.

Conclusions: There was good agreement between the study teams. Awareness of the limitations of the surveillance definition for VAE can help infection prevention personnel in discussions with critical care partners about optimal use of these data.

^a Hospital Epidemiology and Infection Prevention Department, Barnes-Jewish Hospital, St Louis, MO

^b Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO

^c Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO

^d St Louis College of Pharmacy, St Louis, MO

2019 **APIC Applied** Learning Conference

Why not? We only kind of agree with other countries

Explore Journals Get Published About BMC

Antimicrobial Resistance & Infection Control

Home About Articles Submission Guidelines

OPEN Published: 02 August 2012

Concordance between European and US case definitions of healthcare-associated infections

Sonja Hansen , Dorit Sohr, Christine Geffers, Pascal Astagneau, Alexander Blacky, Walter Koller, Ingrid Morales, Maria Luisa Moro, Mercedes Palomar, Emese Szilagyi, Carl Suetens & Petra Gastmeier

Results

Differences in HAI definitions were found for bloodstream infection (BSI), pneumonia (PN), urinary tract infection (UTI) and the two key terms "intensive care unit (ICU)acquired infection" and "mechanical ventilation". Concordance was analyzed for these definitions and key terms with the exception of UTI. Surveillance was performed in 47 ICUs and 6,506 patients were assessed. One hundred and eighty PN and 123 BSI cases were identified. When all PN cases were considered, concordance for PN was $\kappa = 0.99$ [CI 95%: 0.98-1.00]. When PN cases were divided into subgroups. concordance was $\kappa = 0.90$ (CI 95%: 0.86-0.94) for clinically defined PN and $\kappa = 0.72$ (CI 95%: 0.63-0.82) for microbiologically defined PN. Concordance for BSI was $\kappa = 0.73$ [CI 95%: 0.66-0.80]. However, BSI cases secondary to another infection site (42% of all BSI cases) are excluded when using US definitions and concordance for BSI was $\kappa = 1.00$ when only primary BSI cases, i.e. Europe-defined BSI with "catheter" or "unknown" origin and US-defined laboratory-confirmed BSI (LCBI), were considered.

2019
APIC Applied
Learning
Conference

Why not? We can't even agree with ourselves

Agreement in Classifying Bloodstream Infections Among Multiple Reviewers Conducting Surveillance

Jeanmarie Mayer,¹ Tom Greene,¹ Janelle Howell,² Jian Ying,¹ Michael A. Rubin,^{1,2} William E. Trick,³ and Matthew H. Samore,^{1,2} for the CDC Prevention Epicenters Program⁴

¹University of Utah School of Medicine, and ²Salt Lake City Veterans Affairs Medical Center IDEAS Center, Salt Lake City, Utah; ³Stroger Hospital of Cook County, Chicago, Illinois; and ⁴Centers for Disease Control and Prevention, Atlanta, Georgia

Clinical Infectious Diseases 2012;55(3):364–70

Results. Overall, 114 patient records were reviewed by 18 IPs, the majority of whom specified they followed National Healthcare Safety Network criteria. The overall agreement among IPs by κ statistic was 0.42 (standard error [SE], 0.06). IPs had better agreement with a simple laboratory-based definition with an average κ of 0.55 (SE, 0.05). The proportion of patient records that 18 IPs reported with CLABSI ranged from 14% to 39% (overall mean, 28% with a coefficient of variation of 25%). When simple laboratory-based methods were applied to different sets of patient records, classification was more consistent with CLABSI assigned in a proportion ranging from 36% to 42% (overall mean, 39%).

Conclusions. Reliability of IP-conducted surveillance to identify HAI may not be ideal for public reporting goals of interhospital comparisons.

Machine learning in action

- Predicting 'no shows' in a clinic visit.
- Data from our local EPIC instance
- Lots of tinkering with variables, imputing missing values, adding in external data by linking geospatially.
- Sound fancy? Its not really that fancy.

Why not? If you know what you are doing, its not that hard.

Data from the EHR

Variables modified and created...

No show history, population of zip code, age, sex...

102 variables in total

-	● 👣 💣 -	□ ■	- Go to	file/function		- Addins					RS	tudio
D	editor_noshow	_fcm_ADI.R	× B h2o_nc	show_fcm.R	×	train.down ×	edito	or_noshow_	sampling_FCN	M.R ×		
(1)	(a b) A Y Filter Cols: «< 1-50 >»											
	ru2003 ‡	walkin ‡	pct.nos10 ‡	gender 🕏	age ‡	allocate ‡	zpop ‡	Izden ‡	timediff ‡	noshowlyr ‡	noshowhistory ‡	adi
	0				39	1.000	30	6.466			2	111.3
2	0				85	1.000	73	8.190	89	1	1	103.3
3					25	1.000	34	8.168	15			93.51
4	0				24	1.000		7.477	1	2	2	100.3
5			1		68	1.000	78	9.042	1		2	108.0
	0				64	1.000	3	7.651		1	4	127.6
7			1		72	1.000	47	7.619	36			109.3
8	0			1	54	1.000	30	6.466	4			98.97
9		1			21	1.000	52	7.507				94.36
10	0	1	1	1	31	1.000	39	8.831		1	2	116.6
11				1	50	0.991	59	8.324	35			102.0
12	0				38	0.991	59	8.324	63		3	95.47
13	0				65	1.000	51	9.023	57			106.4
14	0		0		80	0.919	83	8.550	11			111.1
15				1	16	1.000	31	7.212				65.51
16	0				32	1.000	47	7.619	62			111.2
17	0	1	1		53	1.000	46	8.700				118.9
18	0	1	1		34	1.000	20	7.479		1	11	114.8
19					25	1.000	73	8.190				105.8

One at the end "class" is 0 for show, and 1 for no show

"Training" a machine to learn

Using a FREE program to automate this model, H2O

Takes out most of the legwork.

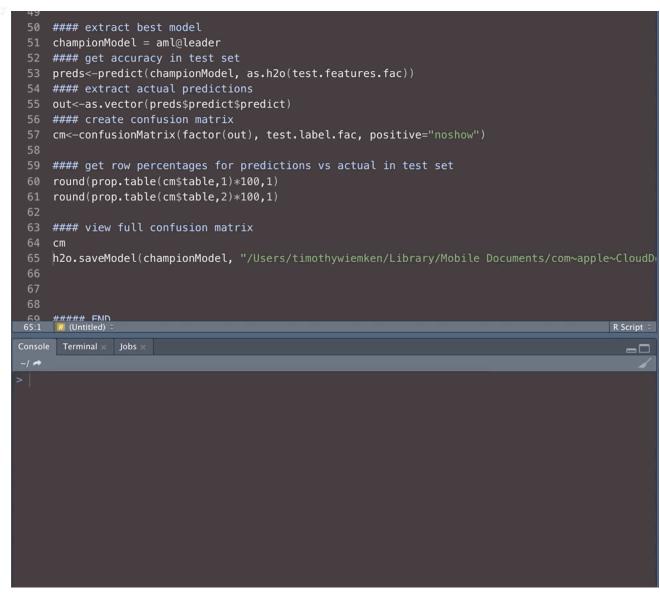
The model learns the patterns associated with showing or not

```
Run Source -
## misclassification, lift_top_group, mean_per_class_error, AUC, logloss
aml <- h2o.automl(x = features2, y = "train.down.label.fac",</pre>
                training_frame = as.h2o(train.fac),
                max_runtime_secs = 20, seed=12349,
                stopping_metric = "mean_per_class_error")
```

2019
APIC Applied
Learning
Conference

Testing the performance

 Throw similar data at the model and see how well the prediction matches with the actual show/no show status



Natural Language Processing

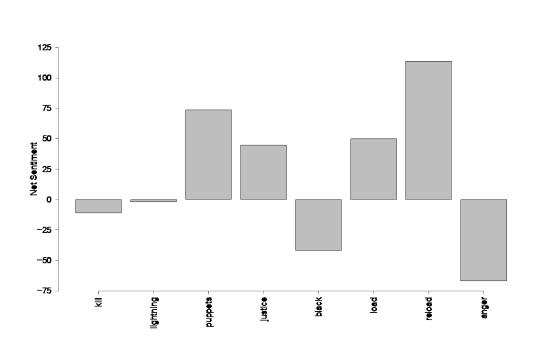
Cooccurrences within sentence

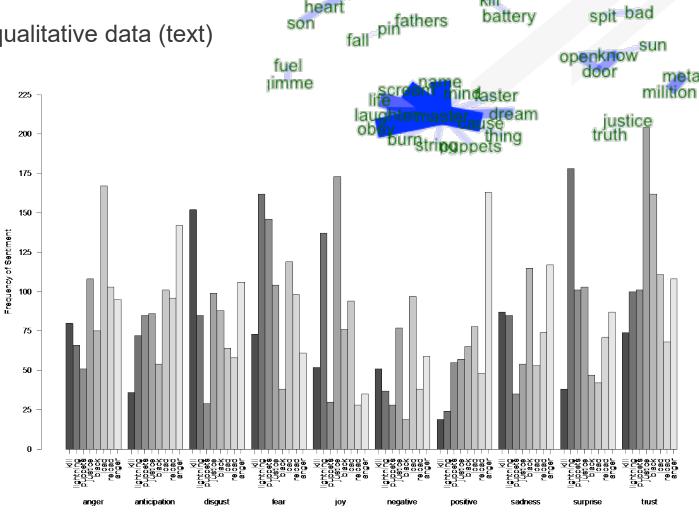
controla

Nouns & Adjective

heart

NLP is a set of methods to evaluate and utilize qualitative data (text)





headyorld

battery

spit bad

2019
APIC Applied
Learning
Conference

Natural Language Processing and Qualitative Data

Methods Inf Med. 2019 Jun;58(1):31-41. doi: 10.1055/s-0039-1677692. Epub 2019 Mar 15.

Deep Learning versus Conventional Machine Learning for Detection of Healthcare-Associated Infections in French Clinical Narratives.

Rabhi S¹, Jakubowicz J¹, Metzger MH^{2,3,4}.

Author information

Abstract

OBJECTIVE: The objective of this article was to compare the performances of health care-associated infection (HAI) detection between deep learning and conventional machine learning (ML) methods in French medical reports.

METHODS: The corpus consisted in different types of medical reports (discharge summaries, surgery reports, consultation reports, etc.). A total of 1,531 medical text documents were extracted and deidentified in three French university hospitals. Each of them was labeled as presence (1) or absence (0) of HAI. We started by normalizing the records using a list of preprocessing techniques. We calculated an overall performance metric, the F1 Score, to compare a deep learning method (convolutional neural network [CNN]) with the most popular conventional ML models (Bernoulli and multi-naïve Bayes, k-nearest neighbors, logistic regression, random forests, extra-trees, gradient boosting, support vector machines). We applied the hyperparameter Bayesian optimization for each model based on its HAI identification performances. We included the set of text representation as an additional hyperparameter for each model, using four different text representations (bag of words, term frequency-inverse document frequency, word2vec, and Glove).

RESULTS: CNN outperforms all other conventional ML algorithms for HAI classification. The best F1 Score of $97.7\% \pm 3.6\%$ and best area under the curve score of $99.8\% \pm 0.41\%$ were achieved when CNN was directly applied to the processed clinical notes without a pretrained word2vec embedding. Through receiver operating characteristic curve analysis, we could achieve a good balance between false notifications (with a specificity equal to 0.937) and system detection capability (with a sensitivity equal to 0.962) using the Youden's index reference.

CONCLUSIONS: The main drawback of CNNs is their opacity. To address this issue, we investigated CNN inner layers' activation values to visualize the most meaningful phrases in a document. This method could be used to build a phrase-based medical assistant algorithm to help the infection control practitioner to select relevant medical records. Our study demonstrated that deep learning approach outperforms other classification learning algorithms for automatically identifying HAIs in medical reports.

2019
APIC Applied Learning Conference

Natural Language Processing

Contents lists available at ScienceDirect

International Journal of Medical Informatics

Accuracy of using natural language processing methods for identifying healthcare-associated infections

Nastassia Tvardik^a, Ivan Kergourlay^b, André Bittar^c, Frédérique Segond^{d,e}, Stefan Darmoni^{b,f,g}, Marie-Hélène Metzger^{a,h,*}

ARTICLE INFO

Keywords: Epidemiology Healthcare-associated infections Decision support systems, Clinical Medical records systems, computerized Natural language processing

ABSTRACT

Objective: There is a growing interest in using natural language processing (NLP) for healthcare-associated infections (HAIs) monitoring. A French project consortium, SYNODOS, developed a NLP solution for detecting medical events in electronic medical records for epidemiological purposes. The objective of this study was to evaluate the performance of the SYNODOS data processing chain for detecting HAIs in clinical documents.

Materials and methods: The collection of textual records in these hospitals was carried out between October 2009 and December 2010 in three French University hospitals (Lyon, Rouen and Nice). The following medical specialties were included in the study: digestive surgery, neurosurgery, orthopedic surgery, adult intensive-care units. Reference Standard surveillance was compared with the results of automatic detection using NLP. Sensitivity on 56 HAI cases and specificity on 57 non-HAI cases were calculated.

Results: The accuracy rate was 84% (n = 95/113). The overall sensitivity of automatic detection of HAIs was 83.9% (CI 95%: 71.7–92.4) and the specificity was 84.2% (CI 95%: 72.1–92.5). The sensitivity varies from one specialty to the other, from 69.2% (CI 95%: 38.6-90.9) for intensive care to 93.3% (CI 95%: 68.1–99.8) for orthopedic surgery. The manual review of classification errors showed that the most frequent cause was an inaccurate temporal labeling of medical events, which is an important factor for HAI detection.

Conclusion: This study confirmed the feasibility of using NLP for the HAI detection in hospital facilities. Automatic HAI detection algorithms could offer better surveillance standardization for hospital comparisons.

a Université Lyon 1, CNRS UMR5558 Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France

^b University Hospital of Rouen, Department of Biomedical Informatics, CISMeF, Rouen, France

^c Holmes Semantic Solutions, Grenoble, France

d Viseo Technologies, Grenoble, France

e INALCO ERTIM, Paris, France

f TIBS, LITIS EA 4108, Normandy University, France

g INSERM, U1142, LIMICS, Paris, France

h Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Unité d'hygiène et d'épidémiologie, Lyon, France

2019
APIC Applied
Learning
Conference

Natural Language Processing

INFECTION CONTROL & HOSPITAL EPIDEMIOLOGY SEPTEMBER 2015, VOL. 36, NO. 9

ORIGINAL ARTICLE

Natural Language Processing for Real-Time Catheter-Associated Urinary Tract Infection Surveillance: Results of a Pilot Implementation Trial

Westyn Branch-Elliman, MD, MMSc;^{1,2} Judith Strymish, MD;^{3,4} Valmeek Kudesia, MD;^{3,5} Amy K. Rosen, PhD;^{6,7,8} Kalpana Gupta, MD, MPH^{3,6,7}

BACKGROUND. Incidence of catheter-associated urinary tract infection (CAUTI) is a quality benchmark. To streamline conventional detection methods, an electronic surveillance system augmented with natural language processing (NLP), which gathers data recorded in clinical notes without manual review, was implemented for real-time surveillance.

OBJECTIVE. To assess the utility of this algorithm for identifying indwelling urinary catheter days and CAUTI.

SETTING. Large, urban tertiary care Veterans Affairs hospital.

METHODS. All patients admitted to the acute care units and the intensive care unit from March 1, 2013, through November 30, 2013, were included. Standard surveillance, which includes electronic and manual data extraction, was compared with the NLP-augmented algorithm.

RESULTS. The NLP-augmented algorithm identified 27% more indwelling urinary catheter days in the acute care units and 28% fewer indwelling urinary catheter days in the intensive care unit. The algorithm flagged 24 CAUTI versus 20 CAUTI by standard surveillance methods; the CAUTI identified were overlapping but not the same. The overall positive predictive value was 54.2%, and overall sensitivity was 65% (90.9% in the acute care units but 33% in the intensive care unit). Dissimilarities in the operating characteristics of the algorithm between types of unit were due to differences in documentation practice. Development and implementation of the algorithm required substantial upfront effort of clinicians and programmers to determine current language patterns.

CONCLUSIONS. The NLP algorithm was most useful for identifying simple clinical variables. Algorithm operating characteristics were specific to local documentation practices. The algorithm did not perform as well as standard surveillance methods.

Infect. Control Hosp. Epidemiol. 2015;36(9):1004-1010

Anomalies, anomalies, anomalies

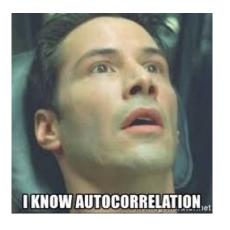
- Analysis of time series data in infection control is troublesome
- Use of Statistical Process Control limits true detection of what is going on
- Anomaly detection algorithms can help fix this.
- Main issues:
 - 1. Autocorrelation
 - 2. Seasonality

Autocorrelation

When something now is correlated with other things recently, but not so much a while ago

Example: Your MRSA rate this month is at least in part due to what it was last month (due to: patient carry over, organism longevity in the environment, staff processes, disinfectant use, etc.)

That same rate isn't as correlated with the MRSA rate 4 months ago (temporal autocorrelation).



The two seasons of St. Louis

- There are a lot of seasonal factors that are linked to infection
 - The July Effect (yikes)
 - Humidity (Acinetobacter)
 - Air conditioning (Legionella)
 - Dirty wounds (MVA)

A July Spike in Fatal Medication Errors: A Possible Effect of New Medical Residents

David P. Phillips, PhD¹ and Gwendolyn E. C. Barker, BA²

¹Department of Sociology, University of California at San Diego, La Jolla, CA, USA; ²School of Public Health, University of California at Los Anaeles, Los Anaeles, CA, USA,

J Gen Intern Med 25(8):774–9 DOI: 10.1007/s11606-010-1356-3

Influence of Relative Humidity and Suspending Menstrua on Survival of *Acinetobacter* spp. on Dry Surfaces

A. JAWAD,* J. HERITAGE, A. M. SNELLING, D. M. GASCOYNE-BINZI, AND P. M. HAWKEY

Department of Microbiology, University of Leeds, Leeds LS2 9IT, United Kingdom

Received 19 June 1996/Returned for modification 22 July 1996/Accepted 14 August 1996

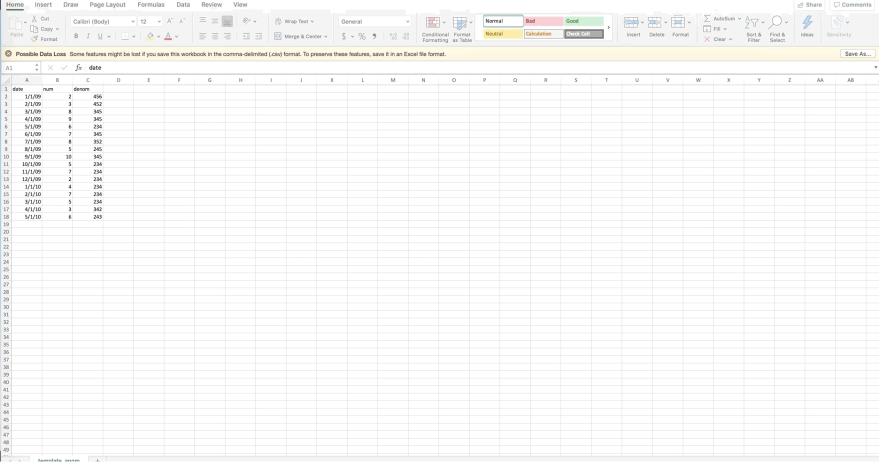
JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 1996, p. 2881–2887 0095-1137/96/\$04.00+0

2019
APIC Applied Learning Conference

Automating the world (your world)

capo.ctrsu.org:3838/shiny/ipstat

American Journal of Infection Control



ELSEVIER
Major Article

Hand hygiene compliance surveillance with time series anomaly detection

Timothy L. Wiemken PhD, MPH, FAPIC, FSHEA, CIC ^{a,*}, Lori Hainaut BSN, RN, CIC ^b, Heather Bodenschatz BSN, RN ^b, Ruby Varghese BS ^b

a Saint Louis University Center for Health Outcomes Research, St. Louis, MO

QUESTIONS?

